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Abstract. We show that the spacing distribution for eigenvalues of band random 
matrices is described by a single parameter b 2 / N ,  where b is the hand half-width and 
N is the size of the matrice. It is also shown that the eigenvalue's density obeys the 
semicircle law. The found scaling behaviour suggests that the fluctuation properti- 
in the intermediate regime, between WignerDyaon and Poiason. are universal. 

1. Introduction 

Random matrix ensembles are extensively used as models for describing the statistical 
properties of levels of complex systems such as heavy nuclei and many electron atoms. 
This idea, put forward by Wigner and Dyson [l], proves to be effective for many 
physical systems and shows once more that in physics symmetries are the relevant 
features: the fluctuation properties seem to be relatively insensitive to the details of 
the interaction. It has recently become clear that classically chaotic dynamics is the 
underlying condition for the random matrix analogy to apply, even for systems with 
a few degrees of freedom (see e.g. [Z]). 

However, in quite generai situations, such as in discretized modeis oi soiid state 
physics or in perturbed integrable systems, a band structure in the  Hamiltonian is a 
common occurrence [a]. Band random matrix (BRM) ensembles may therefore prove to 
be more effective than  the standard random matrix ensembles. A general semiclassical 
argument has been given by Feingold el nl  [4] in support of this hypothesis, and some 
motivation may be traced back to a paper by Chirikov [5]. 

i n e  mathemaiicai invesiigaiion oi BRM enserribies is very diiZcnii, since ihey are 
not rotationally invariant. In these cases we must rely mostly on numerical computa- 
tions, with a few exceptions: apart the obvious limit case of the Gaussian orthogonal 
ensemble (GOE), the simplest analytically investigated case is provided by the other 
extreme, namely tridiagonal random matrices. The latter describe disordered linear 
chains and the exact formula for the eigenvalue distribution was found by Dyson [6], 
aiiu yet ili IS very cur~rp~rcarcu. AIIULILL.~ airarjucorry a ~ u u i c u  iiiuuri 1s ~ i i a b  UL vuruc~ea 
matrices', in which the off-diagonal elements take randomly the values f l  [7]. 

Only recently have BRM been given much attention. They were investigated by 
Seligman e t  a /  [SI as a model for interpolating between Poissonian and Wigner-Dyson 
statistics. Along this line, Cheon [9] numerically examined the low moments of the 
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level spacing distribution. The small spacing behaviour of the joint distribution of 
eigenvalues for small matrices has been investigated in [lo, 111. 

In our previous paper [E] we studied the localization properties of the BRM eigen- 
vectors. The motivation for such analysis was based on the analogy with the quantum 
dynamics of the well-known model of the kicked rotator, for which the baud structure 
appears in the time-evolution operator [13,14]. We have shown that, unlike the case of 
GOE matrices, for which the eigenvectors uniformly distribute on the unit sphere (as 
a consequence of the rotational invariance), for BRM the eigenvectors display a scaling 
behaviour. More precisely, our main result is the following: the average localization 
length divided by the size N of the matrices is a function of b’ /N,  where b is the band 
half-width. 

A natural question is whether this scaling behaviour is valid also for the statistical 
properties of the eigenvalues. This paper provides a positive answer to this question, 
together with numerical evidence that the level spacing distribution for b and N -+ 03 

only depends on the same scaling parameter b’ /N .  

2. The eigenvalue density 

A BRM ensemble is defined as the set of real symmetric N x N matrices with matrix 
elements Ai, = 0 for li - j l  > b .  The parameter 1 5 b 5 N is therefore the number 
of non-zero elements in the first row. The number of independent non-zero matrix 
elements is 

F = kjb(2N - b + 1). (1) 

They are chosen as independent random variables with Gaussian distributions: 

P(A,;) = f iexp(-wA;;)  

P(Aij) = =exp(-2wATj) i < j. (2) 

The ensemble is fully characterized by the three parameters w, b and N ;  however, 
the first parameter only determines the size of the eigenvalues and is not relevant for 
describing statistical properties. For b = N the matrix ensemble coincides with GOE, 
while for b = 2 and 1 we have tridiagonal and diagonal random matrices, respectively. 

In order to gain some insight in the properties of the eigenvalue density p(A)  of 
BRM, we start with the analysis of its low moments, which may he evaluated analyti- 
cally as ensemble averages: 

(3) 
1 

(A’”) = /A’”p(A) dA = Z-’ [dA]-Tr(A’”)exp(-wTrA’) J N  
where 

[dA] = n dAij Z = [dA]exp(-wTrA’). (4) 
i - j < b  J 

The odd moments are evidently zero. The case n = 1 is not of particular interest, 
since it merely amounts to a counting of the non-zero matrix elements 

l a  
N a w  2Nw ( A Z )  = ---1ogz = L F .  (5) 
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The higher moments involve some combinatorial work and explicitly take into account 
the band structure. The result for n = 2 is 

(A') = - ( l l F + G - S N )  
8Nw2 

where 

( 7 )  
2N(b - 1 ) ( 2 b  - 3 )  - ib(b - 1)(5b - 7 )  
N ( N  - 1)(N - 2) - g ( N  - b) (N  - 6 + 1)(2N + b - 5 )  

26 5 N 
26 > N .  

G =  ( 
The twofold behaviour arises because of corner and finitesize effects. To avoid them, 
we shall restrict ourselves, in the following, to the case b < N / 2 .  

It is interesting to investigate the adimensional (i.e. w-independent) ratio 

This ratio can be shown to he identically zero for a semicircle distribution of the 
eigenvalues and has value one for a Gaussian distribution, which is the case 6 = 1. 
For the GOE ensemble i t  is equal to ( N  + 3 ) / ( N  + 1 ) 2  and therefore it vanishes for 
increasing N ,  consistently with the semicircular limit distribution for GOE. 

We now consider the ratio (8) for BRM in the limit of large N and b .  Taking the 
limit such that b/N + 0, the ratio 7 goes t o  zero with the asymptotics 

The next adimensional ratio (A6) / (A2)3  has a much more complicated dependence 
on the band structure. Nevertheless it can be shown that for both N and b going 
to infinity, b/N - 0, the ratio approaches the value 5 ,  which corresponds to the 
semicircular distribution. 

The above discussion leads us  to conjecture a semicircle distribution for BRM 
ensembles for large N and b.  The normalized semicircle distribution can be written 
in the form 

I t  has second moment (A2)  = r2/4; therefore, from expression ( 5 )  one obtains rz = 
2 F / ( N w ) .  

For finite but large N we have numerically found that the eigenvalue's distribution 
is very close to the semicircle law (10). An example is given in figure 1 ,  where the 
distribution p ( X )  is computed from the eigenvalues of six matrices of size N = 3200 
and b = 69. 

A more accurate comparison can he made by computing the moments of the numer- 
ically found eigenvalue distribution. In table 1 we give the values of the adimensional 
ratios (X2")/(XZ)" for different N at  the fixed value b2/N = 312, together with the 
corresponding values which result from the semicircle law. 

As is seen from the table, for large N ,  these two ratios are quite close. Notice that 
the convergence to the semicircle values becomes worse as n increases, thus indicating 
that,  for finite N ,  higher moments are more sensitive to the edges of the distribution. 
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a.8- 
0 . 1  

Figure 1. Histogram of the computed density of states p ( i )  as a function of the 
rescaled parameter A = A/?. Here six matricn with N = 3200, b = 69, w = 1 have 
been used. The curve for the semicircle law (10) is also shown. 

Table 1. 

n N =400  N = 800 N = 1600 N = 3200 Semicircle 

2 2.042 2.029 2.022 2.016 2 
3 5.276 5.198 5.144 5.100 5 
4 15.42 15.02 14.72 14.50 14 
5 48.67 46.75 45.27 44.28 42 
6 162.1 153.2 146.2 142.0 132 

3. The spacing distribution 

As mentioned in the introduction, the investigation of the structure of the eigenfunc- 
tions of BRM has led to the discovery of the scaling parameter z = b2/N [12]. More 
precisely, by an appropriate definition of localization length, the so-called ‘entropy lo- 
calization length’ I,, it has been found numerically that the ratio l , /N is a function 
of the scaling parameter z only. On intuitive grounds, one may expect the existence of 
the scaling property due to the random structure of the eigenstates. Indeed, numerical 
data show that in the case of strong localization (1 << I ,  << N), the eigenstates are 
random on the scale of their localization length [12,15]. I t  was also found that for 
z > 1 all eigenstates may be regarded as completely random, as in the case of full 
random matrices, even if b a N .  

The same scaling properties of eigenfunctions have been earlier found in a model 
with no random parameters: the kicked rotator on the torus [13-161. In spite of the 
strong difference in global properties like the density of states, it was established that 
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this dynamical model and BRM have strong similarities in the statistical properties of 
spectra and in the structure of eigenfunctions. This similarity is related to the band 
structure of the band structure of the unitary time evolution operator of the quantum 
kicked rotator and to the fact that some sort of pseudorandomness appears in the 
matrix elements of this operator, due to  strong chaotic properties of the corresponding 
classical motion. 

Extensive study of this dynamical model (14,171 has shown that the scaling prop- 
erties of eigenfunctions are strongly related to the universal fluctuation properties in 
the quasienergy spectrum. This conjecture has been confirmed in recent numerical 
experiments [14,15] on the kicked rotator model. As a consequence, it is natural to 
expect that the distribution P ( s )  of spacings between neighbouring eigenvalues of BRM 
is essentially dependent on the parameter I only, rather than on b and N indepen- 
dently. As is known, in the extreme case of diagonal matrices (b 1) the spacings 
between eigenvalues are not correlated, resulting in the Poisson distribution for P ( s ) .  
On the other hand, in the opposite case of fully random matrices (b  = N), the RMT 
predicts a specific form of P ( s )  which is approximately described by the well-known 
Wigner surmise [15] 

(11) P ( s )  = +-exp( -$as  2 ). 

An important question is how to describe the intermediate situation for BRM where 
P ( s )  changes from the Poisson to the Wigner-Dyson distribution. Taking advantage of 
the analogy with the kicked rotator model, we follow the approach developed in [14,15] 
and assume that the distribution P ( s )  may be described by the phenomenological 
formula [la] 

where A and B are normalizing parameters and 

For = 0 the expression (12) reduces to the Poisson distribution. For p = 1, 2, 4 it 
approximates very closely the P ( s )  distribution for Gaussian orthogonal, unitary and 
symplectic ensembles (GOE, GUE, GSE). Expression (12) is more complicated than the 
one used in [12,14], but it gives a much better correspondence with RMT predictions. 
For example, for 0 = 1 the deviation from the exact dependence of P ( s )  (see [19]) is 
less than 0.3 % for small (s 5 0.1) and large (s 2) spacings; it is less than 0.02 % 
in the most important intermediate region 0.5 5 s 5 1.6. This distribution is thus 
closer to the exact one than Wigner’s distribution (11) itself. The agreement with 
RMT is very good also for 0 = 2 ,4 .  In addition, the dependence (12) seems to be 
more suitable to fit the numerical data for the intermediate statistics P ( s )  than the 
commonly used Brody distribution [20]. Indeed, the latter dependence ha4 definitely 
a wrong limit for = 1 and large spacings s >> 1. Moreover, when using the Brody 
distribution to fit GOE, one obtains the wrong value 0 = 0.95, instead of p = 1. In 
addition, Brody’s distribution is not valid for situations where the repulsion is larger 
than 1 (for example, for GUE and GSE). 
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In our numerical experiments we used BRM with sizes N = 400, 800, 1600 and 
different band sizes b >> 1. The distribution P ( s )  is obtained by averaging over the 
P(s )  for Q different random matrices with the same N and b (Q = 50, 25, 12 for 
N = 400, 800, 1600, respectively). Since the eigenvalue density is not uniform, the 
spacings have been normalized to  the local density. To avoid the influence of large 
fluctuations caused by the finite size of matrices, a number of eigenvalues at the edges 
of the semicircle distribution (3) have not been taken into account. As aresult, for each 
N and b, the total number of spacings in the final distribution of P ( s )  is approximately 
equal to A4 = 16000-17000. 

A few examples of P ( s )  with the best fit (full curve) of the proposed dependence 
(12) are presented in figure 2. Here, the parameter z is taken to be approximately 
constant, I 6s 1.0, while the band size b and the size N of the matrices vary. The 
data give good evidence for the scaling behaviour of the spacing distribution P ( s ) .  
To show the accuracy of the fit, two curves are also drawn, corresponding to the the 
1%-confidence level. 

s 

Figure z.  he i e v d  distribution r i a )  for z = b2 pi z 1 with iC = 40u 
(+), N = 800 (A),  N = 1600 (e). The Iull curve corresponds to the expression (12)  
with the best fitting value 4 = 0.703 found for N = 800. The broken CUCMS give the 
lower and upper bounds for 1% confidence level with 0- = 0.620 and 4+ = 0.759, 
respectively. 

The summarized data for different values of z are given in figure 3. It is seen that 
the scaling behaviour for the repulsion parameter 0 occurs in a large range of the 
parameter I. This result indicates that fluctuations in the eigenvalue spectra of BRM 
appear to have universal properties which can be described by a single parameter I. 
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I . . . . ,  I 
0 1 2 3 4 

b 2 / N  

Figure 3. The repulsion parameter p for intermediate statistics P ( 8 )  plotted against 
z = b 2 / N ,  for different values of N and b.  N = 400 (+), N = 800 (A), N = 1600 
(e). Each value of p was obtained by fitting the numerical data for level spacing 
distribution with the expression (12) .  All values of 4 are within a 1% confidence 
level. 

4. Conclusions 

In this paper we have studied the statistical properties of eigenvalues of BRM in the 
limit of large b and N .  The numerical analysis leads to two main conclusions: 

(a) The density of the eigenvalues obeys the semicircle law. The conditions under 
which this result can he rigorously proven is currently under investigation [21,22]. 

(b) The eigenvalue spacing distribution P(s) depends only on the scaling parameter 
z = b Z / N .  A similar scaling behaviour is displayed by the localization length of 
eigenvectors [IZ]. I t  would be very important to find analytical support for this 
scaling property. 

Several other interesting questions arise. One would like for example to have an ana- 
lytical derivation for the distribution P ( s ) .  Indeed the expression we used (equation 
(12)) to describe P ( s )  is empirical and has no rigorous support. I t  would also be 
very interesting to relate the repulsion parameter p with the normalized entropy lc- 
calization length f i H  = l,/N which exhibits a similar scaling bchaviour with thc same 
parameter z [12]. 

Scaling properties similar to those described here and in previous papers [12,13] 
should be expected in the more realistic situations where the sharp band structure is 
replaced by a sufficiently fast decay of matrix elements away from the diagonal. A 
support to the above conclusion can be found in [E, 91. 

To conclude this paper, we would like to make an important remark. According 
to Wigner-Dyson, the fluctuations of spectra of full random matrices have universal 
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properties in the sense that they are shared by different complex quantum systems in 
spite of the fact that they have, for example, different density of states. On the other 
hand, full random matrices describe limit situations. Indeed, as mentioned in the 
introduction, most physical systems are described by matrices with a band structure 
which reflects the finite range of the interaction. The results presented in this paper 
lead us to conjecture that in the intermediate case, corresponding to a level spac- 
ing distribution between Poissonian and Wigner-Dyson, fluctuation properties have a 
universal character. For example, as we have shown, the kicked rotator model on the 
torus and BRM have similar fluctuation properties both for spectra and eigenfunctions, 
in spite of the fact that the densities of states are completely different (semicircle for 
BRM and uniform distribution of quasi-energies of KR). 
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